Toward Future Fisheries Management

Some New Concepts For The 1980 s

- University of Wiscorsin Sea Grant Institute

Toward Future Fisheries Management: Some New Concepts For The 1980 s

Proceedings of a Great Lakes Fisheries Meeting at the University of Wisconsin-Madison January 14-16, 1981

Funding for the Great Lakes Fisheries Meeting and this publication were provided by the Univeraity of Wisconsin Sen Grant Program under a grant from the Office of Sea Grant, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, and by the State of Wisconsin.

WIS-SG-81-424

For copies of this report, contact:
University of Wisconsin Sea Granc Institute
Communications office
1800 Univeraity Avenue
Madibon WI 53706
Phone: (608) 263-3259
Cost: \$1.00 including postage and handing

Publication Coordinators: John Magnuson/Linda Weimer
Editing: Stephen Wittman/Linda Weiner
Cover Design: Chriatine Kohler
Production Assigtance: Catherine Shinners

LEGEND TO COVER MAP

Dark-shaded areas represent major fishing grounds (where phytoplankton production exceeds 250 nilligrans of carbon per square meter per day). Unshaded aress of the oceans and international boundary lines extended offshore indicate the effect of a 200-nautical-mile economic zone.
Preface v
"The Directions of Fishery Science" by John Magnuson 1
"What Does Pishery Management Need from Science?" by Ron Poff 3
"Optimum Use Fisheries Management" by Henry Regier 7
"Cybernetics and Fishery Management" by Larry Crowder 15
"The Excluded Mddde: The Need for a New Paradigm" by R. Edwards 21
Abstracts -- Titles and Page Numbers 31

PREFACE

The papers reprinted and abstracted in this collection on the future of fisherles management were originally presented at a conference on the Great Lakes fisheries held January 14-16, 1981, at Madison, Wis. The meeting, organjzed and hosted by the University of Wisconsin Sea Grant Institute, was designed to bring together fishery blologists and resource managers from throughout the region to diacuss the present and future status of Great Lakes fishertes.

One conference gession focused on future fisheries management policies and addressed the specific question: What does management need from fisheries science? The papers reprinced here all revolve around that theme. The abstracts that follow are representative of the other themes and topics covered at the conference. While they were generated by an interest in better managing the Great Lakes fisheries at the regional level, their message is national, even global, in nature. The management of the world's fisheries, in light of the extended coastal jurisdictions of nations, requires that there be a rethinking of priorities and a fresh look at technology and science as they apply to solving fisheries problems.

At the same time, this collection of papers is being used by the Ocean Policy Committee of the National Academy of Sciences as a working paper to assiat them and their Pisheries Task Force in generating scientific advice pertinent to the Fishery Conservation and Management Act and the Law of the Sea Convention. Sea Grant Programs around the country are also vitally interested and involved in these larger national issues of fishery management, so it seems appropriate for the U.W. Sea Grant Institute to publish these proceedfing.

Efforts to explore this area of fisheries management and the ideas expressed in these papers are by no means unique. In the March 1981 issue of BioScience, there was a fine series of articles written by distinguished acholars that covered the issues involved in future management of the world's fisheries.

Nevertheless, we hope that this collection of papers and the abstracts that follow them will help to stimulate more thinking on this subject and help to focus the attention of fishery biologists and managers on the challenges that they will face in the years to come.

THE DIRECTIONS OF FISHERY SCIENCE

John Magnuson
Director, Laboratory of Liunology
University of Wisconsin-Madison
Madison, Wls

It is a time of scarce financial resources for the management of fisheries, of demands to provide more and more precise predictions of various management alternatives over larger regions of the globe, of the need to weigh biological management criteria against economic, political and social criteria. In this management milieu, there are many new needs in the critical relationship between fishery management and science. Some of these needs are addressed in the following papers.

Managers, for example, are asking scientists new questions with broader implications, and they are calling on a broader range of talents to help with the fisheries management task, as Ron Poff's paper reveals. We have moved past the point of managing these resources from a strictly biological point of view.

Also, when it comes to what constitutes optimum use of a fishery resource, our opinions have clearly changed, as Henry Regier points out in his paper. We are not just talking about maximum sustainable yields but also optimum yfelds, and Regier addresses some of the elements that need to be considered in looking at that optimum. The search to clearly specify the components of optimum use continues.

Economists have a rather clear definition of economic efficiency, but we recognize that fisheries policy and management, in practice, often do not take these economic factors into account. While a lot of "lip service" is paid to economics as a criterion for management, decisions are frequently based on other criteria instead, while little attention is given to the economic elements of fishery management decisions.

There are also new ideas that can be applied to the blological aspects of fishery management and these are exemplified in Larry Crowder's paper on cybernetics and fishery management. Are we in control of the resource? Can true control of our interaction with fish populations and communities ever be achieved? These are questions that Crowder explores.

If scientific fisheries management is to be achleved, Robert Edwards makes a strong case for the need for a new supporting cast. His rationale for a fisheries "architect" or biological engineer -- or "common sense quantifier," as Regier refers to it -- should stimulate introspection in our field.

In light of these papers and the fisheries management climate they reflect, I have a personal comment to offer. I have become concerned for the future of fishery science; by that, I mean concerned for the future development of new ideas and new levels of understanding related to the ecological basis for fishery science.

It is easy to picture a scenario in which more financial resources for fishery science go toward the application of our present technology to more stocks over larger portions of the globe, leaving fewer dollars and people to advance the science to higher levels. It is possible that in such a situation, our sctence will atagnate and we will leave to the next generation of those who apply fishery science the same technology we have avallable today.

Most of the $i d e a s$ presented $i n$ these papers are relevant to this concern. The fishery "architect" to whom Edwards refers is the person who would apply fisherfes science. This application should include economic efficiency as an integral part of the scheme. How precise a prediction will be then becomes a question of how expensive it will be to make the prediction more precise. Prectse enough will have to replace any peeudoscientific idea of as precise as possible. The choice between a simple or complex model -- its data demands, the number of fish or environmental variables measured -- becomes a decision based on the finterplay between the costs and benefits of the prediction's precision. If ifttle thought is given to this concern, we may have few financial resources left to allocate to the advancement of our science.

The development of a fishery architect also puts new demands on those who remain in research. It will not be sufficient to grind out the numbers on another atock in another year and make yet another prediction; that is not research, that is technology. Research becomes the acquisition and testing of new knowledge, new questions, new concepts, new realism, new generality, new technique. How much of the present-day fishery science is applying the old, as opposed to seeking the new? I would bet only a small portion is involved in seeking the new.

In the search for the new, a thirst for simplicity should have as high a priority as a thirst for understanding complexities. The new technology will need inexpensfve, suitably precise predictions. Are these now state-of-the-art? If so, I fear that they are not widely applied.

A number of the ideas and concepts in these papers are new, or are at least new applications of old ideas that are now crossing disciplines. To tie, they point out the importance of the search for the new for all of those who are involved in the scientific aspects of fishery management.

WHAT DOES FISHERY MANAGEMENT NEED FROM SCIENCE?
 Ron Poff
 Staff Spectallat, Great Lakes Comerctal Flshertes
 Whsconsln Department of Natural Resources
 Madison, Wis.

What do we, as flaherles managers, need from acience? Maybe soclologists, economlsts, attorneys and communtcators, who are concerned for the flsh commulty and the many people who enjoy the resource, can help answer our questions. Thts constitutes a departure from what wight be expected when one asks, "What do we need from fishery sclence?" The departure is intentional, slnce others speaklng on this subject are sure to address what they need of ftahertes sefentists. Instead, I came up with a list of questions for whtch I felt there were no ready answers. These are questons we are frequently asked In dtscusstons with the publlc. There are some people, espectally program admintstrators, who feel that it's tmportant to have answers to these questions and that these benefits or costs are things to be constdered when programs compete for funds.

One concern of sport and comerclal fishermen ls the comparative values placed on the sport flshery, the commercial fishery and the charter flshery. How valuable ts the flshery in economlc terms, and what terms are used? Do you talk about the purchase prlce of the flsh as lf you were to buy fish in the market? Do you talk about particlpation costs? What does it cost you to participate in that fishery, and ts that a posttue or negative part of this economic value? How about the splnoff that's Involved in all of the various types of f [sherles -- the jobs that are created. How much of the money that you asstgn as a value to a flshery is actually new, and how much is fust money that's reallocated? Somebody thought I was nuts the day I sald, "We're probably just takl ng people out of the bowling alleys over at Sheboygan and putting them down on the breakwater." Maybe I was. Is $\mathrm{t} t$ jobs or dollars or something less tanglble that you use when you talk about the economic value of the sport fishery. I know that we've got economists out there who think they've got the answers, but I haven't been able to get those answers for these flsherles yet in a sultable form.

What are the socfal values attached to the flshery? Several years ago, I attended a meeting in Houston that dealt with Optimum Sustained Yteld, and a soclologlst spoke about the social value of the flshery in Gloucester. The sociologists were more lnterested in maintalnting the lntegrity of the Portuguese fishting commulty there than in malntaintng the integrity of the ground fish flahery. But there is a soclal value. How do you measure those social values? Who should do tt? Certalnly not a fisherles sclentist. What are the soctal values? There's soctal value in relaxation and eatching fish.

To be a flsheman: that's a soclal value. Some people think it's great just to be [nvolved with some aspect of the environment. There are aestheric attrlbutes of the environment, and In fishting you become aware of these: that's a social value. Someone recently talked about transitional values. interpreted that to mean they were simply talking about the change of scene and tis value to people who are stuck in an offtce or who are putting sheet metal screws In cars flve days a week. These people get out on a lake and tt's a tremendously exhtlarating change of scene to them. It's a time for thought when you're fishing.

In commercial fisheries, fishing is a tradition. That's got to be a strong social value: how do you measure that? It's a regional tradition, as in Door County, Wisconsin; a tradition all over the Great Lakes area. It's also a binding force in communities built upon a long, strong history of comercial fisheries. They can say, "Hey, we're a fishing comunity!" -- and it meana they have strong ties with each other. There's also a sense of accomplishment in catching fish and feeling that you are providing for others, and that's probably a social value too. Enough about social values.

Then you try to tie economic and social values together, and people talk about socioeconomic values. They relate them to biological values, and there's where we get into this whole business of Maximum Sustained Yield and its relation to Optimum Sustained Yield, and various people's definitions of these terms. Maximum Sustained Yield is basically what you're harvesting at the maximum rate of population growth. When you try to optimize yield, you get into some prescribed definitions in the federal lawg. Optimum Sustained Yield is that quantity of fish that will provide the greatest benefit, with particular reference to food production and recreational opportunities. That amount is prescribed on the basis of Maximum Sustainable yield modified by relevant economic, social and ecological factors. That's the legal definition on the saltwater coasts. It may not be our definition of what optimum Sustainable Yield is on the Great Lakes. At the Houston meeting, a clearly acceptable definition of optimum Sustainable Yield successfully evaded the discussants.

Under this area of socioeconomic vs. biological values and how you address their relationships, we have several client groups that have to be involved in the decision-making process. The question is: Should their roles be expanded? Wisconsin has commercial fishing boards -- client groups with limited rule-making authority over Lakes Michigan and Superior. In this instance, we have expanded the role of the harvesting group, and industry has become part of the management scheme. Perhaps there are other client groups who should play more important roles as well. We have advisory bodies; maybe their roles should be strengthened.

The administrative process has generated a lot of questions and created problems in and of itself that we need help with. These relate to the failure of the regulatory authority to react to fish resource changes in time to ensure that public interests ace best served. We state in our policy that we will institute a resource management program that will react to the dynanic changes in the fish stocks. Yet if we want to change an administrative rule in wisconsin today, it's going to take us nine months to do it unless we can convince people that the change is essential to the preservation of public health, safety or welfare. That's too long. In some of our fisheries, a whole year-class will be recruited to the fishery and exploited beyond acceptable levels in less than one year. In some instances, it may have been the only strong year-class in the last few years. So the time frame is wrong. Here's where we might ask the legal profession for help. Is there another way we can approach the changing of regulations governing resource harvests? Are there other processes besides rule-making available to us? Is it possible to draft a method for changing the quota on one of our critical species, which might involve making a simple calculation from a formula published right in the ruleg? I envision a procedure whereby fish stock strength indices collected through the winter are incorporated into a formula that would then be used to generate the new quota for the subsequent fishing year, thereby avoiding the whole long process of going through hearings. The formula would perhaps be promulgated through the rulemaking process.

There's another area, too, where we need help, and we're getting some of it -- whether we like le or not, we're getting t t. Who has rights and privileges to use the fishery resource? Why do they have them? Well, certalnly In Wisconsin, the Lake Superior Chippewas have rights to the resource, and they retalned them in treaty negotlations more than a century ago. What are those rights? That's another thtng subfect to interpretation. Who has been granted privtleges out there? Most of us have been granted privtleges by the people of the state, through tts government, to go out there and harvest some part of the resource. We buy a license to do thls. That's a privilege and clearly not a right In the same sense as the rights retained by Natlve Amerlcans. Perhaps the differences between rights and privlleges need clartfteation.

Every time we write a rule governing a fishery, somebody says, "You can't do that. That's unconstitutlonal." Are the constitutional challenges belng adequately mer? We need some help to be sure we're staying on the right track as far as those kinds of challenges go if we are to weather future challenges to our constltutional authorlty.

There's another area where we need help. We have, in managing a resource as large as the Great Lakes, Interstate as well as international commitments. It's not fust Wisconsin's lake. There's a boundary ilne out there in the middle and Lf you step across it with your load of fish, the Michigan authorities will chase you, and if you come back to our side, the Wisconsin authorttes will chase you. The fishery ta an Interstate resource on Lake Michlgan, and an Internat lonal resource on Lake Supertor. We should constder what more we can do as far as Informal and formal agreements. How far do such agreements go toward solving some of our resource management problems? We should look at compacts between atates as a management tool. In some areas we have used rectprocity as a tool ln managing resources, or at least in managing the people who use the resources. There's more room to explore on this avenue for getting the job done.

We should also ask the communtcators for some help, because another question 1s, "Are our cllents belng adequately informed on the status of the fish resources and of the fisherles?" Do they know enough about the biology of the fish spectes out there to be Informed when they hear something from us, or are they confused? Are they really aware of how exploltation affects the scocks? I suapect they're not as Informed as they should be, because we still have people who are firmly convinced that explottation doesn't affect the stocks at all, that everything is cyclle and they can do as they damn well please out there: "Stocks will assuredly be depleted, but they'll recover sooner or later." Do these people really know on what we base our dectstons or what is important to the dectsion makers? We recelve input at our publice hearings and tnformational meetlings, and a lot of it is flack -- meantngless tuput. Do the partictpants know how we make our decistons?

Now, what purpose wlll the answers to all these questions serve? They'll permit us to reflect cllent concerns in our management programs. They'll assist us in patterntng new policles: policies must be rewritten as public Lnterests and attitudes change. The answers should also ald us in designing and tmplementing new rules. And in the long run, they might allow us to move from the crlsis management in which we presently find ourselves to strategtc management programs. I'm confident that in Wisconsin we're about to encer a perlod of planned management, directed by sound policy and reflecting strong publle Influence.

OPTIMUM USE FISHERIES MANAGEMENE

Henry A. Regler
Institute for Enviromental Studtes
Unt verstty of Toronto
Toronto, Canada

The term "optlmum use," as a general objective or goal in renewable resource management, came to be used with lncreasing frequency as the $\mathbf{1 9 7 0} \mathbf{s}$ progressed. Some proponents may have percelved it as an analgam of a number of more spectftc goals. "Conservation" served such a role for much of the present century; as a slogan it is apparently foundering under the dead welght of too many accretlons of subgoals and innumerable connotations, with some laconststencles whthln the set.

Terms 1tke "conservation" and "optlmum use" are like multifaceted, evolvtng semant $t c$ complexes (see Rothschtld and Roales 1979). They are often used to specify broad policy goals of somewhat heterogeneous elements. They can be used as political slogans, and certainly "conservation" has long been used Ln this way. Some politiclans have linked "conservationism" with "conservativism." Durlng 1980-81 the government of Ontario, dominated by the Progresstve Conservative Party, used the sequence "Preserve it, Conserve it:" In officlal advertlsements. Opposition polittctans scorned all statements that no gubliminal connection was intended.
"Optlqum use" is an amalgam of concepts that have been derived from varlous sources:
-- It usually involves a ranked order of a specifled limited number of uses that can be jointly accommodated, as opposed to haphazard use by an indeterminate number of users (open-ended multipurpose use) or to unregulated single-purpose use (by some powerful vested interests).
-- It Ls usually orlented toward a goal specifled more or less explicitly in socioeconomle as well as biophyslcal terms.

- Somettmes the mathematics of optimization are applied directly to spectfy goals or programs to achieve them; then "opt mum" is used in place of "best," because the latter word [s likely to be perceived as more value-loaded than the former.
-- A new, emerging coalition of tnterests may adopt optimum as a slogan For a rather eclectlc mix of connotations, perhaps, but not necessarlly like those above.

In practice, as applled to North American flsheries management, "optimum use" incorporates at least several of the narrower, more conventional concepts listed near the top of Table 1. It tends to asslgn high value to "senstitve uses" of natural systems. Speciflcally which terms in Table 1 are incorporated into "optimum use," and how the elements are then arranged in
 and from time to time. It also varies dependlag on the perspectlve of different linterests within a particular jurisdiction and time perlod.

TABLE 1
Fourteen Politlcal Options Related to Aquatle Econystems

1. Preservation of wild nature in a primeval state.
2. Restoration or renovation of despolled features of nature to the orlginal prlmeval state.
3. Rehablittation of the more deatrable wild features of despolled nature, but not of some undesirable features.
4. Melloration or enhancement of the extating ecosystem by Infusing destrable new ecological features that were not present in the primeval state.
5. Conservation or optimization of one or more human uses of the ecosystem, with each use practlced In an ecologlcally genaltive way.
6. Mttigation of undestred tmpacts of conventlonal human practices on ecosygtems.
7. Reclamation by redtrecting major natural processes for human use, such as dewaterlng a wetland.
8. Comerclallzation by organlzlng natural features and products for sale.
9. Urbanlzation by tmposing modern human settlements upon some space in the ecosyatem.
10. Induatrlallzation by siting major enterprises, tnevitably having ecological impacts, in the ecoaystem.
11. Palllation by uslng other scarce resources ostenslbly to protect nature, but only by token or ineffective means.
12. Externalization of useless or harmful byproducts of human activities to be diluted, Inactlvated or assimilated by the natural parts of the ecosystem.
13. Degradation by utterly fgnorlag or wilfully despolifing wlld nature.
14. Ablotization or sterlilzation by creatlag a nonnatural development that might consist entirely of nonliving or "ablotic" structures of concrete, glass, steel, plastlc and almilar man made materials.

Source: Regler et al. 1980.

Most of the concepts/slogans in Table 1 have been addressed by "quantiflers" whose mission is to generate untquely definitive advlce to dectsion-makers. They presuppose that numertcal Information is better, or at least more convinctig, than nonnumerical. To effect a degree of closure on difficult problems sufficient to permit the elaboration of quantitative formulae, simpllfyling assumptions are apparently always necessary. The assumpt lons may relate to features of a problem that are disulssed as extraneous, to abstractions of relationships retalned ta the problem studied, or to approximate techniques for dolng complicated calculations. Sometimes the slmpliftcation verges on gross overstmpliflcation, and then a very credulous manager is needed If the attempt at quantification is not to be dismlssed as untealistlc.

For many quantifiers, the mathematlcal abstractions seem far more real than what busy managers percelve to be real within the hurly-burly of thetr everyday lives. It is only the occastonal manager who falls to decline a role that would require him to remold ecological and socioeconomic behavtors to make them fit the mathematical abstractions. Polltlctans are even less tractable in thls respect than most managers. The abstractors, at least the more perceptive among them, may feel confused and hurt.

Neverthelebs, Common Sense Quantlflers (CSQs) have thelr places wthtn the expert gervices avallable to managers. CSQs take a mlddle road between the everyday reality of the practical managers and the ldeallstlc reallty of the quantitative theorlsts (see Edwards 1981). It Ls as CSQs that we proceed here with the discussion of "optimum use."

We expect that some concept of "opt mum use" will have some general currency In North Amerlca for the next decade or two, at least with respect to renewable resources management, both of the resource blota and the ir natural habltats. The concept will likely:

- focus on "sensltive uses" as related to human lngestion, recreat ton and enviromental consensus;
-- relate prlmarlly to larger tsaues (goals, objectives, strategies) rather than to particular local events;
-- remaln fairly complex operationally;
- differ in emphases between jurisdictions;
-- evolve through tlme within jurisdictions according to changes in pollcical parties in power;
-- provide bcope for a wide variety of compromises and tradeoffs in practical applicatlon; and always
-- evade rational closure (i.e., lt will remaln open-ended).
The more complicated forms of quantification will continue to be perceived as providing lnteresting and challenging opportunlties to learn and practice analytical skills. Only seldom whil the more complex quantifications be accorded enough recogntition to permit then to spectfy optimum measures that will actually be lmplemented tn full tn the world of the manager. This does not upser the CSQa, who may operate on the conviction that some intermediate level of quantiflcation is usually "optimal." Perhaps this is as it should be. Democratic soctetles, and perhaps all other sociectes, have never attached overriding significance to quantitative measures on important matters, in splte of the triviallzing propenslties of today's popular media, which engender a kind of mass conditioning with respect to a variety of
stmpltstle statistlcal indtces. The more effective politlcians and managers are those who know how to cope with the extgencles of fluctuating Indtces as well as with the osclllatlog public optnton percentages, whether these are causally Inter related or not.

Some years ago, Wilson C. MacKenxte of Canada's Department of Fisherles and Oceans examined a sertes of offlctal and quast offlctal documents to search out expressions of goals and princtples that underlay Canadian flsherles pollctes then In place (MacKenzie 1974, clted In Loftus et a1. 1978 with a brlef summary). An economist, Mackenzle had long been a senlor poltcy advisor withtn the Canadian fishery department and thus was well quallfled to recognize concepts that had lafluenced the polletea tin practice.

Table 2 contalns a summary of MacKenzle's llst, except for the entrles Identified whth ascerlsks. They all seem relevant to soclety's intereste in squatic ecosystems. The one entry in hls 1 list under "envtromental harmony" still retalned a strongly comercial blas. Naturalistic, romantic, aesthetic or other "environmentaltat" goals were not part of the motivation of Canada's federal flshertes practices at the time; this has been emphasized by A.W.H. Needler (1979), long-time deputy minlster of flsherles who left in the early 1970s.

Slml larly, MacKenzie's list contalned no direct reference to a goal on prtmary allocation of some ftshery resources to the trade or domestic fishertes of Canada's native peoples, though this was clearly practiced in many locales. Recent eventa have emphasized the Increasing signlficance of such a goal, both In Canada and the U.S.

Economlats and ecologists have each elaborated somewhat different kinds of concepts and techntques in thelr study of man/nature interactions. They can be sorted Into sets assoclated with the three major perspectlves sketched ln Table 2 (see Figure 1).

The correspondence aketched In Flgure 1 between partlcular discipline foct and politcy options ts not intended to imply anything more than a strong blas. In practice, there ts almost inevitably overlap among the goals. Also, the disclplinary cools have some flextblltty in that they may be applled, perhaps secondarlly, to lssues related to the other goals. But a atrong one-to-one blas does extat.

So what, then, $i s$ "optimum use"? Bastcally, optimum use, as a goal related to the allocation of "rights to use," Ls what the dominant polltical forces determine it should be in partlcular locales and in particular time periods. In Canada and the U.S., the following generalities seem to apply with respect to the primary relevance of particular pollcy goals and thetr assoclated discipltnary tools:
-- The larger, mostly offshore marlne food and industrial fishertes are managed primarliy by the pollcy of "matertal well-beling."

- Smaller, nearshore marlne and freshwater food flahertes as well as most recreat lonal fisheries, both martne and freshwater, and also the native peoples' flsherles are all primarily addressed chrough the goal of "cultural opportunity," which also involves matntalning ecosystems in a productive state.

TABLE 2
Goals for Canada's Ftsheries Assembled by Mackenzle
I. Environmental Harmony
A. Conservation and enhancement of the harvestable productivity of aquatic (freshwater and marine) ecosystems.
B. Preservat $\begin{gathered}\text { (}\end{gathered}$
C. Preservation of representative ecosystems In a state as close to the prlmeval as practlcable.*
II. Materlal Well-Belng
A. Sustained growth In reglonal economles.
B. RLsing returns to production factors (capltal labor and enterprlse) and equitable dtstribution of same.
C. Increased employment opportunlties (quantlty and quallty).
D. Economic stablltty (including trade and monetary affalrs).
III. Cultural Opportunity
A. Proviston of opportunttles for recreation and personal development (including education and physical and mental health).
B. Allocation of prlorlty of harvest to native people and/or remote communlties in some locales.
C. Maintenance of securlty and freedom (mlntmum soclal disruption).
D. Advancement of Internatlonal peace and progress (national obligations to the world commulty).
*Not part of Mackenzle's List.
Source: Loftus et al. 1978.

Ieland biogeography.
Indicator species.
FIGURE 1. Three major policy goals, as elaborated in Table 2 , showing some overlap in practice.
Bracketed terns refer to economic approaches and ecological approaches (italics) as
applied in management initiatives focused primarily on the relevant particular policy

goal. (See also Talhelm et al. 1980 for further discussion on economic approaches.)

- Endangered spectes and fish of parks, especlally wllderness parks, are likely to be managed according to the goal of "envtronmental harmony." Also, as in Ontarto, the management agency may have set preservation of the resource as a first priorlty for all fisherles management options.

There are occastons and locales where polltical, economlc, ecologlcal and soctologlcal reallties might overlap to brlng all of these constderations to bear. An example would be when, for cultural purposes, native people klll a few individuals of a particular rare species that has great potentlal appltcation for enhancement that would beneflt native, recreational and commerctal flsherles. If ln such stuations the polltical process has not succeeded \ln speclfylng some priority allocatton among these goals and their assoctated vested interests, then there is nothlag much that disclplinary experts can do to resolve the confllct. The different tools of economles and ecology are all strongly blased. None of them fully transcends the bastc differences between the pollcy goals.

But the Interdisciplinary eclectic pragmatist, qua CSQ, needn't collapse in despair if the pollticians have not yet managed a polltical resolution. The pragratist can elaborate alternative scenarlos. Then, with the judlefous application of Common Sense Quantiftcation and some stmulation, light can be shed on the relative merits of the varlous scenarios. Such an approach might help clarlfy the lssue for the polltlelans, wlth the result that a bastc resolut ton, if only temporary, is achleved. This more deflnttive, balanced study can be undertaken uslng the conceptual and methodological tools approprlate to the pollcy prlorlties.

Sclentiflc atudy and practical management of flshertes -- and presumably of other flelds of renewable resources and the natural environment - have long been domlnated by one-tool experts. Different fisherles in different locales are dominated by different ktnds of one-tool experts. A consequence
 experts on marine Industrlal fisherles, experts on freshwater recreational f lsherles and experts on threatened species $I n$ parks.

Such parochialism is no longer tolerable, at least in situations where the polltlcal process geeks to achleve some form of optimum use with an allocation of rights to common resources among a number of lnterest groups that are motivated toward quite different goals. Here, interdisciplinary electictsm is necessary both to help analyze some options for the politiclans and, subsequently, to manage so as to achteve a speciflc resolution as agreed upon by the polltlctans.

In the process of investing the term "optimum use" with this mix of ldeas, the pollttcal process has agaln challenged experts with new and broader demands. But experts are generally rather conservative. So it is predtctable that a decade wlll have to pass before a majority of the then-contemporary experts will know what to do to approxlmate "optlmum use." In the meantme, there will be some nolse and confusion, generated in part by the one-tool experts.

References

Edwards, R.G. 1981. The excluded mLddle: the need for a new paradlgw. Natlonal Oceanle and Atmosphertc Admintetration, Woods Hole Laboratory, Woods Hole, Mass.

Loftus, K.H.; Johnson, M.G., and Regler, H.A. 1978. Federal-provincial strategle plannlng for Ontarlo fleherles: management strategy for the 1980s. J. Flsh Res. Board Can. 35;916-27.

Needler, A.W.H. 1979. Evolution of Canadtan Elsherles management towards economlc rationalization. J. FLsh Res. Board Can. 36:716-24.

Regler, H.A.; WILlLans, T.H., and Grlma, A.P. 1980, Rehabllttatlon of the Long Point ecosygtem: inttlatlng process. J. Urban and Environ. Affalrs (In press).

Rothschlld, B.J., and Roales, J. 1979. Publlc policy for a speciallzed interest, the oceans. In Proceedings of Conference on Comparatlve Marlne Policles, pp. 235-44. Center for Ocean Management Studies, Universtty of Rhode Island, Praeger, New York.

Talhelm, D.R.; Bishop, R.C.; Libby, L.W.; McConnell, K.E., and Schnld, A.A. 1980. Understandting unrevealed extra market values of natural sources. Mlchlgan State Untverslty, East Lanstng, MLch.

AcknowLedgements

The contents of this paper have emerged from my efforts to understand the positlons of numerous thoughtful colleagues as these posttions were exposed $t n$ such actulties ag the Fisherlea Research Board of Canada Research Planning Studles, the Canada-Ontarlo Strategle Planning for Ontarlo Figheries, the U.S. CouncIl on Envi ronmental Qualtty Workshops on Maxtmum Sustatnable Yteld, and the Great Lakes Ftshery Cormlsston Studtes on Great Lakes Bcosyatem Rehabliltation. My thanks to the followtng people for reaponding helpfully to an earller draft: R.C. Blshop, E. Cowan, R.L. Edwards, W.H. Everhart, A.P. Grima, K.H. Loftus, J.J. Magnuson, R.T. Oglesby, B.J. Rothscht1d, D.R. Talhelm and W.T. Youngs. The Ontarto MInLstry of Natural Resources provided ftnanclal suppore for thls otudy.

CYBERNETICS AND FISHERY MANAGEMENT: WHAT MUST WE KNOW TO RIGOROUSLY CONTROL FISH COMMUNITIES?

Larry B. Crowder
Laboratory of Ltmology/Department of Zoology Univerelty of Wisconstr-Madtson

We have reached an era of 14 mits. It $t s$ apparent with respect to both fish ylelds and flshertes management. The world flsh catch seems to have leveled off, and though we are managing to lncrease the catch by stockling fish In some freshwater systems, such as the Great Lakes, we know that sooner or later there is an upper limlt to what we can catch. As we try to be more and more prectse \ln management to increase ylelds without tncurring some excesalve risk - of stocks collapsing, for example -- the tnformation requirements from scfence, as well as soctal, economic and political sources, will lncrease very rapldly. In other words, how precisely we wish to "steer" a particular fishery system ts goting to dictate how much information we need to manage the gystem whthln acceptable performance boundaries. It may very well come around the other way. The limited resources avallable to acquire information may constrain how preclsely we can manage, how detalled a control job we can do.

We often find ourselves in a mire of competing "wants" regarding fishery resources. The academic sclentlst often wants co know everything there is to know about the system. We all, as blologlsts, have some curlosity about the system, so new questlons and excltlag new observations constantly artse. The rebource manager want a -- and needs, perhaps -- to pare down from knowlng everything one could know about a partlcular flshery system to knowing those factors that are important to managing the system. The public usually wants results in tems of tncreased fishing opportunlty at the lowest possible cost. Public curtostty about how blologlcal systems work $1 s$ often 1 imited, based on the cost they are asked to pay for research. In a clme of limits, we are In the position of having to separate or clarify the difference between wants and needs. That puts academic sclentlsts and managers, ln particular, In the poaltion of having to limit laquiry from all that we would like to know, co what we accually need to know.

Systems control theory and related approaches probably constitute the most Intricate approach to the management of complex dynamic systems. If, for example, engtneers are launching a rocket, they monttor how far it is going off the planned trajectory and make small corrections to keep it on course. Insect pest managers have also used control theory to manage insect population "trajectorles" (Tumala 1976). In fishertes management, we are probably a long way from carefully "steertng" a fishery system, but control theory is an lnteresting approach, at least in the sense that it clarifles where we are Likely to run into trouble as we try to fine-tune our management approaches.

So the quegtion ls: What kind of informatton would th take to manage a fishery system In the way an englneer would try to deslgn and manage any complex dynamle systew? I have chosen the Lake MLchlgan fish communtty as an example of a system that we are currently attempting to control (Fig. 1).

Essentially, the systen is described by a collection of dynamic "state" varlables; in the case of Lake MLchlgan flishes, these wight be numbers, abundance, dtatrlbution or specles-spectfle roxic chemlcal loads. These

Fig 1. FISHERY SYSTEM CONTROL STRUCTURE
vartables may be described by thelr state, which changes over time and which is tnfluenced by management pollcles and exogenous disturbances. Exogenous disturbances come from outside the system and may affect Lake Mtchlgan flish population stzes or abundances. Uncontrollable envlronmental varlables, such as weather, are often considered exogenous factors. Part of what we conslder dlsturbance is Lgnorance -a tif we knew exactly how climate fnfluenced fish populations, we could butld that tnto our model, monttor the weather and reduce the effects of exogenous dtsturbances or stochastle effects on our predtctions. Essentially, the sport or comerctal ftshery, or somerimes asaessment flsherles, monttor the state of the system. They monitor the abundances of flahes or the population sizes and state output estimates in tema of catch per untt effort. Withln some measurement error, that kind of estlmated system output is then fed into a management taformation system that used the data co infer how the system is functionling relative to desired performance criterla. Thls assessment then influences what kinds of pollcles tsgue from the controller or management agency. Basically, it is a stmple feedback control system.

Based on systems control theory, there exlsts a set of constraints or lumtations for thts kind of control scheme. First of all, the controlled syatem must be modeled mathematically with reasonable accuracy. Fortunately for englneers, thelr systems are based on well-known phystcal princtiples and so are simple enough to develop an accurate mathematical model. We are still far from modeling the Lake Michlgan fish communtty very accurately. A second factor is that policy inputs must be connected to the state varlables; that is, managers can put their hands on the right "knobs" to effect changes in the system state, In many flshery systems, it looks like we are able to do that. This ls especially true in Lake Michigan, where most of the top predators are currently stocked and lamprey are subject to chemical controls. Control theorlsts also assume that the system operates with random disturbances that affect the state -- we certalnly have a lot of those, a lot of unknowns.

The fourth criterion $1 s$ that the desired performance of the overall system, including the control system, can be stated mathemarically as a set of conslatent speciflcations or goals. We are making some progress toward getting some goals unified for the Great Lakes ecosystem (GLFC 1980). If we were In the unfortunate situation of each manager having goals for the same system that are not conslstent, then lt would be very difflcult to agree on any desired performance criterla. Control theory also assumes a ratlonal control-design procedure that leads from system speciflcations to a control pollcy (L.e., that we have some good management theorles and experience on whilch to base our pollcy dectaions).

Ftrally, control theory assumes that the control pollcy can be reallzed in terms of "real time" operations -- that chts kind of control system or, for that matter, any kind of feedback control system can only be stable if the time lag that it takes for the controller or manager to estimate changes in a state and lmplement some appropriate management poltcy is shorter than the time dynamlcs of the system itself. Fishery sctentists are in trouble utth thts assumption. Any number of reasons extst for long time lags in getting management pollcy changed, one of which is an Instituttonal problem: it takes a long time to change laws. If the management or the control system has generally longer clme dynamics than the system does, the control essentially gets out of phase with the system dynamicg. It ls like driving a car on an lcy road with a three-minute time delay in the steering wheel: you're just never going to stay on track.

Within this context, what kinds of problems are there with [mplementing thls sort of model and control system? How far are we from developlng models of the Lake MLchlgan flah comunlty? In terms of our understandtrg of blology, some of the constralnts are as follows. First, recruitment relationghl ps: Are there any stock-recrultment relationships for managed lake Michlgan flshes? Can we predict next year's alewlfe population from a stock assessment of thls year's alewife population? We can probably agree on "no" as the answer to these questions. Further, how does recrultatent relate to exogenous factors? Can we relate alevife gear-class strength to climate or to water temperature or to some other varlable in a way that will allow us to predLct changes in alewife abundance?

A second blological constralnt is the problem of spatial and temporal dynamics. Lake Michlgan is obvioualy a very large syatem, and it is nalve to manage that whole large system as Lf Lt $t s$ a polnt system. There are all klnds of spatlal discontlnuttles, and except for some seasonal effecta, i think it ls falr to say that spatial and temporal dynamics are not very welt known. In spatially and temporally dynamlc systems, the mean of certatn state varlables or the mean of certaln output varlables may not be as lmportant as the varlance. If there la a very whe vartance on the predicted alewlfe population $s t z e$ and we are lnterested $t n a v o l d i n g ~ r i s k s ~ o f ~ a t o c k ~ c o l l a p s e, ~$ then the varlance turns out to be a key element. Senstrivity analyaes of models would help us determine which varlables to monitor closely.

In Lake MLchlgan, we have experlenced a serles of invasions of exotic spectes. Specles interactions, and partlcularly interactions repulting from exotlca, have been a great source of surprtse to us in the history of the Lake Michlgan system. The flrst of these surprlses lis age-class interactions, which relate to my first concern - recrultment relationslps. We do not know how larger slze-classes of plankt vores may affect recrults or larval flshes. Second, we know little regarding competitive effects among spectes of planktivores, for example. We observe changes in relatlve flsh abundance or diatrlbution without really understanding what the underlylng mechantans are. Compecition or predation or some unknown mechanlam may alter system state varlables, and we can't hope to predtct these dynamics unless we can understand the processes that cause the observed changes.

Obviously, predation may have a profound effect on the Lake Michlgan forage flshes. Don Stewart (1980) examtned the increasing atocking rates of aalmonld predators and, using a biaenergetics model for predator growth and congumption, asked the question, "Are we getring close to some carrytng capacity for salmonld predators, or are we far from that yet?" The answer cells us whether we have a management problem or not. In other words, the Information we need and how careful we must be are a function of how far we are from some limlt. Stewart'a analysls suggests that galmonld predators may be croppling a substantial portion of the alewife forage base.

The introduction of exotic species - the lamprey and alewt fe, for example -- are easent lally stochastic events that would completely change the form of any model that we may have created. They may drive the system to a completely different stable point -- a completely different coumuntty composition. So spectes introductions are very likely to cause unantictpated changes.

Clearly, to develop a flah commulty model for Lake Michlgan we would need more Information on the ecologlcal phystology and behavtor of the organlsms. In general, we need to know a whole lot more than we do now to minlmize surprtses. But so far, managers and sclentists around the lake have done a really remarkable job responding to surprlses and mitigatling against damages. A tremendous alewtfe problem was turned lnto a tremendous salmonid sport fit shery.

It is appearent that a very important component of thla controller design is agreement on goals. The Great Lakes Fishery Comission has recently published a proposal for a "Jotnt Strategic Plan for Management of Great Lakes Plshertes." It will be interesting to see how we put this proposal Into a tactlcal framework: How do we state those goals ln more expliclt form for a partlcular case? That whll be the test of whether or not we can do it well.

Obviously, I have 1 lmited myself to fust blologlcal components. Management of these systems is golng to have to encompass a larger ecosystem perapective, including such faccors as cllmate, alr pollution and water quallty. It will also requite a substantlal input from user groups - the social, polittcal and economic aspects of the management process.

I also want to give an example of what may be an Important time lag tn the Lake Mlchtgan salmonld predator-prey system (Stewart 1980). A bloenergettcs model was used to estmate the lmpact of coho and chinook salmon and lake trout on the alewlfe population. Glven Information on the temperatures of water these flsh occupy and the flsh's growth rates, one can back-calculate from physiologtcal equations how much food they had to eat to grow in the observed fashtion. Then the dlet shlfts that occur as these fish grow can be factored $\mathrm{t} \boldsymbol{n}$ for an estlmate of how many alewives they are eating.

If we were uging an on-1tne control system, we would have to monttor alewlfe population stze and adjust our stocking poltcles to follow alewtfe population increases or declines. If the alewtfe population increases, we are not In a whole lot of trouble because we can always stock more predators next year. But if the alewt ves should decline rapldly for any reason, we would have a serlous time-lag problem. From the time we could detect an alewife population crash, there are long time lags before we could do anything about tt. For example, the major tnfluence of these salmonid predators on the alewife population comes, for coho, cht nook and lake trout, two, three and flve years, respectively, after we have already stocked them. In other words, salmontd predators we stock ln Lake Michigan now are golng to have thetr major effect on the forage base several years from now. In addition to that, we have a significant time lag to even assess whether the alewife populations have declined or increased. So it is difficult to deternine if the alewlfe population ls outside destred ilmits. Even when we find out, it may be too late to do much about tit except mitigate agalnst damages.

The recent suggest tons from Carl Walters regarding "active" adaptive management (Holilng 1978) are tntriguling. Thts sort of management is experimental and allows us to learn something about the system behavior. In fact, active adaptive management may be the only way to test certatn management hypotheses (Walters et al. 1980). However, if we have a management system working swoothly, there $t \mathrm{~s}$ a tendency not to take risks, not to "play with" an economleally lmportant system.

If active adaptive management la difficult to justify because of the rlaks, then I would conslder two alteratives. The flrst ls to attempt to model these systems mathematically and perform the perturbations on the models. In other words, Lf we cannot do the expertment in the fleld, we should at least try it out on models that are reasonable. Second, we are not explolting passive expertments that are golng on ln lake Mlchigan to the fullest. With every management action we take and with every natural fluctuation in the populatlons, we have experlments goling on. They may not have all the appropriate controls, but I think there are things we can learn from them. Glven the llalts on what we can know -- based on flnances and manpower and so on -- our most tmportant job ta to concentrate on agking the right questions.

References

Great Lakes Flahery Comisston. 1980 (proposed). A jolnt strategle plan for management of Great Lakes flaherles.

Holling, C.S., ed. 1978. Adapt ve envl ronmental assessment and management. International Sertes on Applied Systema Analysis, vol. 3. New York: John Wiley and Sons.

Stewart, D.J. 1980. "Salmontd predators and their forage bsse In Lake MLchigan: A bloenergetics modeling synthests." Ph.D. thesls, Unlveralty of Wlaconsin-Madtion.

Tumala, R.L. 1976. Concept of on-1tne pest management. In Modelling for pest management: concepts, technlques and applicatlons, R. \bar{L}. Tumala, D.L. Haynea and B.H. Crofte, eds., Pp. 28-31. MLehlgan State Unl verstty.

Walters, C.J.; Spangler, G.; Chrlatle, W.J.; Manlon, P.J., and Kltchell, J.F. 1980. A synthesis of knowns, unknowns and poltcy recomendations from the Sea Lamprey International Sympostum. Can. J. FLsh. Aquat. Scl. 37:2702-08.

Robert L. Edwards
Director, Northeast Fisheries Center National Marine Fisheries Center

Woods Hole, Mass.

History will record that during the period from 1960 to 1980 , marine figheries went through an incredible and short-lived series of changes. A rapidly growing population, the need for proteln foodstuffs, less-thanresponsible toutings of the ocean's potential, cheap energy, and difficulty developing substantive international protocols in the ocean -- all this and more led to a rapid expansion of distant-water fisherfes, grievous overexploitation of fisheries and finally the present regime in which national purviews have been extended into the ocean beyond the traditional three-mile limit.

Those of you who follow the ups and downs of the Law of the Sea Conference (LOS) know that this activity, begun in the middle sixties, still remains to be consummated. It seems the fisheries issues are largely resolved if only because most countries of the world jumped the gun and extended their jurisdictions years ago. The LOS Conference and the activities associated with it have provided fertile discussion ground for lawyers and students of ocean law and polfcy for more than a decade. I feel even this activity will diminish considerably with or without agreement in the near future, just as have the distant-water fleets.

Of far greater interest to me than all the painfully obvious symptoms of "entropy," as Jeremy Rifkinl would say, is the dilema posed to the marine fishery biologist who finds his traditional role and his credibility challenged. Most of your are aware that the marine fishery biologist has been under fntense fire in the northeastern U.S. during the last four years. For those of us involved, it has seemed a little like early Salem revisited. The challenge is most serious in more democratic societies, but nonetheless exists everywhere. In fact, it's been occurring everywhere that "science" has been percelved to directly have an impact on man.

The problems that I am talking about, of course, can be generalized: they are those dealing with the allocation of resources. In general, the emotional content of the rhetoric has been directly related to the severity of management impacts upon the local citizenry. It is not easy to accept limits and make allocation decisions. What escapes most people is the universality of disenchantment with technical advisars of all descriptions. Thus the same ire and irrationality that exist on both sides in the U.S. can be found in South Africa, the North Sea, the Philippines, Japan and Central America.

My purpose today is not to dissect these problems. This is not a lesson in the comparative anatomy of fishery management problems. I am more interested in the management process as a living phenomenon and in its continued well being.

Accordingly, I will be addressling two interrelated setentiflc problems that bear on the viabllity of the marlne fishery management process as t serves the purpose of a nation. The two problems are: (1) difficulties in the technology (Information) transfer process and (2) misunderstanding the diverse roles of the scientist. Incidentally, I use the term sclentiat in reference co all technically tralned people, be they blologlats, economlsta or got lologists. I refer to anyone charged with the responstblitty for assembling facta and figures and assaylng them objectively to provide useful Lnformation to those who must wake declelons for society. To show that the problems are untuersal, I will illustrate che lasues with some European examples. The tisues or quest lons are no different in seope than those observed In the Untted States or anywhere else.

The 200-mille extenstion -- whether viewed as an extenston of the economle zone or a territorial sea -- had a gevere Impact on the European communlty of nations. Tradtionally, the International Councll for the Exploration of the Seas (ICES) provided needed sctentiflc advtce to the natlons or commisalons Involved. Before the extenston, all the countries tnvolved carrted out thelr managerlal functions under the agita of the Northeast Fishertes Advisory Comalasion (NEFAC). But the extension of jurlsdiction made NEFAC amblguous -In part because of the resulting regionallzation of fishery tnterests and control. Depending on your polnt of view, NEFAC may $t n$ fact be what t needed today. In any event, there are now, for example, the Baltic Sea Fisherles Commlsston and the European Economlc Communlty, both of which are actively Involved $t \mathrm{f}$ [shery management. However, ICES remalns the prime source of sclentlfle advice.

The enhanced parochiallsm of the new flehery situat lon quickly brought to the gurface pervastve, subliminal unhapplness whth "sclentists" -- In this Lnatance, the fishertes blologists of ICES. But the ICES Is a mature communlty, and lts reaction was to establlsh a forum for dialogue between sclent lats and wanagers. The first dialogue meeting was held in Copenhagen in May 1980. Followling this "breaking of the lce," ICES President Dr. Gotthif Hempel encouraged customers to comment upon ICES' advice presented in the 1980 report of the Advisory Committee for Flshery Management (ACFM). These responses were used as the basls for the next dialogue meeting in October 1980. There were many responses to lempel's request. I appended one of them, a letter from Mr. J. Hertoft of the Danish Minlstry of Ftaherles to this paper (with his permisaton). The following quotes illustrate the flavor of the letter:

[^0][^1]The Lnformation transfer problem la often expressed as the need for a popular, even a comic book, version of an assessment report. This is not a laughing matter. Today's is a complex techntcal soctety. It is overburdened with data on everything affecting our lifestyles and more bestdes. Somehow, technologists seem to be held primarliy responstble for the communtcation fallures. Undentably, they are lnadvertently at fault for exacerbating the problem and are even ditrectly responstble for th tn some cases. Much of thls Is due to the fact that there are many sclentlfic roles, and these different roles are not clearly recognized.

In the strict sense, a sclentlst is someone searching for new knowledge. His/her work and discoverles are tested, verbally or in the literature, agatnet chose of colleagues. It ls, purely and simply, a competition of Ideas. As such, the competition ts vulnerable to the full range of human virtues and folbles.

Every sclentist wlshes for peer respect and wishes to survive ln his or her chosen fleld of work. For the "hard core" research sclentist, the goal is to move ahead the frontier of aclence. Introducing this level of scientific tnteraction tato the procesa of maklng a soclal decistion frequently serves only to decreage the probability of arriving at a reasonable dectston for that part fcular time and place. It generally frustrates the nonsclentist and enhances the lmpression that sclentiste are arrogant and unresponsive to the needs of soclety and that they are trying to dictate society's objectives.

My grandfather on my father's stde was the chief englneer for the American Brldge Company many years ago. One of hls projects was the George Washtngton Brtdge. It was his responslbllity to tmplement a socioeconomic decistion to brldge the Hudson RIver. He had a responstbiltty not unltke that of a staff member of a flshery management councll or a member of a flsherles ministry charged wlth eatablishtug fishery management protocols. My grandfather concerned hlmself with dellvery schedules, quality control, safety and other such thtings assoctated with bullding the brtige. He was not, in this role, a sclentist; he was the man who tmplemented the decfision to brtdge the fudson RIver.

The brldge was designed by a flrm of archltects. Destgntig bridges and bulldings often starts with in a compettion among architects to see who will come up with a cost-effective, aesthetically pleasting solution to a carefully deflned need.

Is the architect a counterpart of the sclentlst? An archttect may be an artlst, but is not a sclentist. Architects are constrained to design structures that meet speciflc needs. They work wlthln the generally agreed upon "state of the art" when te comes to the quallties of butiding matertals and an understanding of design constralnts as they relate to such things as loadlig, response to environment and energy efficiency.

The "research" is done in engineering handbooks and trade publications. The "sclentlfic" work took place earlier in the laboratory (e.g., National Bureau of Standards), In prtvate industry (e.g., companies that tested and documented the charactertstics of the matertals they produce) and tin the unlversity (e.g., deslgn studiss, development of new matertals).

One assumes that the archltect 1 s sure that every component part recommended has been approprlately tested and that data exlsta for its breaklng strength, modulus of bending, aging charactertstics, temperature responses and so forth. Each of these attributes ls documented somewhere, using standard statistical procedures. It is understood that the archltect did not do any of thls work but assumed reaponstblity at the polnt at which he recommended new comblnatlons of materlals and new degign solutions. Socfety underatands the architect's role fairly well and, as a consequence, the actentist $L n$ thla mix ts seldom visible and hls advice ta not sought.

Althaugh Invistble, the scientist is there in the sense that the architect's craft depends upon data developed and presented tn handbooks, technlcal papers, seminars and textbooks. Much of thls materlal is presented and analyzed in exactly the same manner as la biologtcal or economic data. The aame statistical procedures are used to provide estlmates of conftdence (prectston) and the same problem extsts when lt comes to deallng whth the aspect referred to as accuracy. Stnce safety ls so obvious a factor of concern -- falling brtdges are not dealrable -- the designer pays attention to the probablilty of matertals not living up to the "average" expectation and bullds in approprlate safety factors. As tt turns out, many of the fallures that do occur are usually related to a lack of quality control at the factory or to construction shortcuts, rather than to a fallure to bulld in the approprtate safety factor. Bullding tin this safety factor is an accepted procedure and ls defended, if necessary, by the deslgner, not by the sclentlat In the Natlonal Bureau of Standards.

The archttect ls hired for his sklill and judgement; he ts hlred to convert technical data into a product unlquely designed to meet soctety's needs.

In passing, It ts worth noting that the data avallable to a bridge deslgner has been developed under tdeal ctrcumstances, relatively apeaktng. Fisherles data doesn't come as easlly. The data will never be as prectse and will never be amenable to repeated testing because tt is always changlng. Nonetheless, the average value estimated for any particular situation (glven that it ta accurate) has an equal probabllity of beling right or wrong whet her it ts the breaklng atrength of a cable or an eatlate of atock stze. In a difflcult flahery allocation sltuation, building \ln an approprlate gafety factor for blological data requires the judgment of a Solomon.

Face-to-face exchanges between declston-makers and sclentists often create tatractable commulcation problems. To communlcate data, the technologhat $i s$ obllged to trivialize $1 t-$ by that, I mean to present a multidtmensional sltuat ion two-dimenstonally. This type of presentation ta of ten coo arcane and is resented for that reason. As soon as it is recogntzed by his audtence as a gross simpliflcatlon, the sclentigt is accused of "talking down to us."

The architect serves as a technology transfer mechanism -- what I refer to Ln flsherles as the "excluded middle." That role, or paradigm, hasn't yet taken form ln our fishery management activitles. It requires a background and tralning as sophisticated as that of the archltect. Unfortunately, there ts as yet no clearly establlshed reward structure for such lndtviduals. The function la beginaling to take shape in the fishery management councils and in ICES with respect to the ACFM (AdvLsory Comittee for Fishery Management). Unt versttles are also begtnntng to perceive thts need and are moving to deftne such a paradlgm; later tt wlll be possible to develop an appropriate currieulum.

To date, thls function has been served by putting flshery scientists Into these "archltectural" posithons. Lacking a clear perception of this new role, these Indivtduals tend either to continue $I n$ the mode of a fishery sclentist, or co serve the publle interest as they see $L t$, usually making the mistaken assumption that thetr partlcular expertise ts relevant. Under these ctrcumstances, they will recomend such tht ings as total allowable catches without spectfying the rattonale or having stated objectives from dectelonwakers. Thus, the ACFM and various other techntcal advisors are seen as providting advice "for the greatest good, for the greatest number, for the greatest length of time." At times, they are seen as adopting an arrogant definticion of che public interest - that is, "what men would choose lf they saw clearly, thought rationally, and acted distnterestedly and benevolently." 2

Such generally accepted definitions of che public interest taply that clear and unambiguous goals exlst for soctety. Everyone knows they do not:

- Ftahery btologists concern themselves with "maxtmum sustatnable ylelds," multhspectes models, overflshing, etc.
- Economists talk about "net soclal benefft" and tend to extrapolate thelr studles to indtcate 1 imited entry as the only solution to fishery problems.
*The consumer wants qualtty food at mintmal cost.
- The businessman wants his profit.
- The flaherman wants hls freedom -- and so on.

Clearly there are few, tf any, generally accepted concurrent goals for soctety.

We need to put the aclentlat back in the role of being a sclentlat. He or she should be concerned with lmproving stock glze estmates, understanding stock recrultment relactonshtps and lmprovting the abllity to project population changes far lnto the future. The sclenclst should be neutral and make no value judgments. Sclentists are not necessarily any more objective than anyone else. Value judgments are often the bases of social decisions and are expressed at polling places, public meetings and legislative sesstons. As one cyntc sald, "Man ls characterlzed by his ablllty to be objective about everythting but hlmself."

Under the present circumstances, advisory committees and individual technlcal advisors that serve as an Interface between scientists and soctety at large have two optlons.

The flrst is to try and reflect society's needs when they provide advice. Thls ls not only impractical, but also lntrudes upon the purview of other properly constituted Institutions to deal wth such problems. It suggests that those tind viduals or comitttees can fully apprectate and represent all polnts of view. At one point during the ICES dialogue meeting, one of the ministers remarked that he very much wanted to know what a partcular blologlst thought as a blologist, not as a person. Thl s made the point rather well.

The second option to reatrict the purview of technical advisors and committees. The very firat reatriction would be that they behave strictly in a neutral manner and only go beyond a stmple, stralghtforward description of the state (economlc, blologlc, etc.) of any partlcular flshery resource and Lts aoctal amblance when expltctt goals or objectives have been stated by the approprlate dectiton-maker.

If you agree, then we have no option but to establlah a new role -- that of the fitshery management engtneer (archttect), or Common Sense Quantifter (CSQ), as Henry Regter would aay. ${ }^{3}$ It should be emphasized over and over again that guch advisors must have a clear statement of needs before they can carry out their activitles. Eatablithlng such a posttion does not solve the problem if the needs are not clearly defined.

I have presented these tdeas to several groups and tn every lnstance have been asked cercaln questlons. I will comment brtefly upon the toplcs addresged.

Not surprisingly, I have been asked to deftne the role of the federal actentist. Sctentists range tn roles from those who study a partlcular subject because It interests them (whether or not they have support from anyone) to those who carry out programs that are cotally deftned in advance by someone else. For the most part, our work within the National Fishertes Service ls at that latter end of the spectrum. We are responstble for carryting out work relevant to partlcular altuations in whtch there is a need to elther make a declston, or provide advice to the publlc. Sclentlats tn thla mode are constralned to be somewhat conservative in their approach. As much as possible they need to avoid getting into the "compettion of ideas." The advlce they provide must be recognlzed as belng based on generally agreed-upon sctentiflc princlples. It can't be so far out or process-orlented that it is percetved as Irrelevant or "nice to know," as one admlnistrator put Lt. Thls tends co put the government sclentlat in a difficult posltion. He or she $L s$ empected to malntaln credlblitty by engaging in hard-core reaearch and, at the same time, work full-ttme on the more mundane, less lmaginative, strictly operat ional kinds of research that are deemed necessary.

There $4 s$ no slmple explanation of why technical people are so often resented. Remember the statement I mentioned earlter, where someone remarked that he wanted to know what a partlcular blologlst thought as a blologlat, not as a person. Contained In that comment is the lmplication that the blologist has some control of events as a consequence of what he gays. The most articulate statement concerning control was made by Professor John McKalght in an artIcle he wrote on the The Medtcalization of Polittcs. ${ }^{4}$ I have quoted part of thls article below. To put lt into our frate of reference tn this paper, substltute the word "blology" for "medictne" as you read it.
"Vtewed In these terms, the essential function of medicine ts the medtcallzation of politics through the propagation of a therapeutic ideology. This ideology, strlpped of Its mystifylng symbols, ts a slmple triadic credo: (1) the bastc problem is you, (2) the resolution of your problem $t s$ my professional control and (3) my control ts your help. The essence of the medical ideology is its capacity to hide control behtnd the magte cloak of therapeutic help. The power of this mystiflcation $t s$ so great that the therapeutlc Ldeology is belng adopted and adapted by other interests that
recognlze that their control mechanisme are dangerously overt. Thus, medicine ts the paradigm for modernlzed domination. Indeed, its cultural hegemony is so potent that the very meanling of polltlcs ts beling redefined.
"Politics $L s$ Lnteractive -- the debate of cltizens regarding purpose, value and power. But medicallzed polittes is unilateral -- the dectsion of the 'helpers' on behalf of the 'helped'...
"Polltics is the act of reallocating power. Medlcalized polltics mystifles the controlling Interests so that thelr power ls no longer an lasue and the central polltical question becomes one of increasing the opportuntty to be controlled....
"A polltical soclety, peopled by cicizens, will certalnly flnd a need for a litited, valuable craft called medtcine. That legltmate craft wll be the result of whatever remalns of modern medicine when our people have healed themselves by rediscoverlng thelr eltizenshlp."

This is a delightful and articulate way to express the problem. Obvtously there ls a lot of good faith on both sides of the lsgue. In most lnstances, I am sure that the quotes overstate the seriousness of the problem. Nonetheless, the natural tendency for techntcally tralned people to accept power and to use It according to thelr own perspective te a significant part of the problem.

To some degree, the role of the "archltect" In the flsherles area has exlsted to the form of consultants hifed for thelt expertige, much as the architect ls hited. However, there are very few of these tndividuals. More often than not, thelr services are sought by flahl ig intereats in other countries. To a limited degree, the role also exists tht private sector. I question whether the need $t s$ suffictently great \ln our country to support very many of these individuals or enterprises, but $i t$ f s certalnly one solut m^{2} to the problem.

REFERENCES

${ }^{1}$ RLfkLn, J., and Howard, T. 1980. Entropy. New York: Viking Press.
${ }^{2}$ LIppman, Walter. 1956. The Public Phtlosophy. New York: Mentor Books.
${ }^{3}$ Regler, Henry. 1981. What Is Meant by Opt Imum Use? Paper presented at Great Lakes Fishertes Meeting, UnI versity of Wisconsin, Jan. 15, 1981.
${ }^{4}$ MeRntght, John. Sept. 17, 1975. "The MedLcallzation of Polttles." The Chrlstlan Century, pp. 785-87.

APPENDIX A: Text of a Letter from J. Hertoft to G. Hempel, Prestdent of the International Councll for the Exploration of the Seas.

Dermark

26th September, 1980
Dr. G. Hempel
Internat onal Council for the Exploration of the Seas (ICES)

Dear Profegsor Hempel,
In your letter of 29 August 1980 you ask "customers" to draw attent Lon to 2 questlons, which they would wish ICES to deal with ln the next ACFM Report and to suggest any further improvement, which they think could be made tn the Counctl's procedure for providlng advice.

We are all aware of the fact that the advice glven by ICES on flsherles management and the way thls advice ls used by the admintstratons is far from satisfactory as a bagis for present and further flaherles pollcy.

Therefore we would like to suggest that the following questlons be discussed at the meeting:

1. Is the data base avallable and are the methods used for assessment of flsh atocks sufflciently rellable to ensure that the eat fmated catch predtctions, and hence the TACs based there on, ulll lead to the "agreed" objectIves?
A. Flishery stacletics in geveral countrles are rapidly deterlorating because land ings are not reported, or more often are reported as orlginating from a different area or as belng of a different species. Basically, the state of affalts is brought about by a quotation gystem with Its Implicit Invitation to cheating. Is there any background for computat ion of TACs wthout rellable landing statiatlca? Has a fishery polley using TACs any future at all? Can TACs be replaced by some other management tool?
B. In recent years there have been a number of "embarrasaing" revtstons of recently-declded TACs. Is this due to the fact that early estimates of year-class strength are wuch more difftcult than they appear to be from the ACFM reports. When dolng catch prediction the sclentlats have to estimate the present (or recent) flahery mortality rates. Is ACFM confident that the methods used for this are so accurate that they allow for recommendations often appearling as a single figure TAC?
2. What are the objectives of the regulatlons Introduced for the different flah stocks, and who is setting these objectives?

There seem to be three causes for [ntroducing a TAC of a fish stock as a means of flishery regulations.
A. To prevent the stock from golng extlnct and, of course, to bring it back, If it ls atready golng extinct. Under single-spectes management it la an indisputable goal to bring a depleted atock up agatn. Indtsputable, because losses to other ftsherlea caused by the necessary management measures (mixed ftsherles problems) and the conflicts thereby created are often deliberately neglected. This, obviously, should not be so.
B. To shift the stock size from one steady (or reasonably steady) level to another in order to increase total catch and/or the catch per haul. The ACFM has been taklng for granted that chis is poltelcally deslrable, an attitude already crttcized at che previous dialogue meeting. Alternatives are apparently not much discussed.
C. As a precaution agatnst a development whose direction is not known. In the absence of data to assess a fish stock the ACFM has sometimes recomended a precautionary TAC computed as the average catch over the last few years. In other words, It ls recommended to stop further development of the flshery. There may be legal reasons for adopting TACs tn order to prevent, for Instance, certaln nat tons who are not allotted quota, to take part in the fishery. However, it cannot be a task for the sclentlats to recoumend precautionary TACs. In dolng so, they make pure polttical declsions with no selentiflc background.
D. ICES continues to glve advice based on single stock assessment. The fact that effort exerted on one apectes causes mortallty on other opecteg too, and the problem, whether developing and malntalning large gtocks of predatory flshes ls actualy in the tnterest of the fisheries was never tackled by ACFM. Then admintstrators are still faclag the tllusion that each apectes can managed as if other spectes did not exist.
3. How can the problems ment loned under ttems 1 and 2 be tackled?

There is no stralghtforward answer to thla questlon. However, tc ls of utmost importance that the problems are recogntzed. One way to ensure that thts is done may be to ask ACPM for a full specification of the basts of each TAC, whlch is stated tu lts report. (An example of a possible "quest Lonnatre" to ACFM Ls appended).

If such a procedure la introduced the work load of the scientists will once more be increaged. This, however, may lead to a better understanding of the shortconlngs in the advice that ICES provides for $80-100 \mathrm{ftsh}$ stocks and hence lead to conslderations of how to put research work needed un order of prlority.

Yours Stincerely,

J. Hertoft
Danlsh Minlatry of Flsherles
Denmark, Copenhagen

Quest fonnatre to ACFM:
Proposed apeclfication of background infornation in relation to tacs.

To be glven for each stock

1. The polltcal objectlves on whteh the TAC ta based
2. Evaluation of the data base
(a) Source of errors
(b) Magnitude of errors
(c) Their consequences for the eatlmation of TAC
3. Inmufflctency of the methodology
(a) Source of errors
(b) Magnitude of errors
(c) Their consequences for the estimation of TAC
4. Estlmated TAC
5. Summary of ACFM's judgment of the valldLty of Lts advlce
6. Puture research neaded
```
SELECTED ABSTRACTS PROM OTHER PAPERS DELIVERED
    AT THE GREAT LAKES PISHERIES MEETING
    AT THE UNIVERSITY OF WISCONSIN-MADISON
        JAN. 14-16, 1981
```

U.S. Pish and Wildife Service Programs In the Great Lakes 33
Progress and Problems Related to the Great Lakes Fisheries-Minnesota 34
New York Great Lakes Fisheries Management Policy 36
What Do Sport Fishermen Want from the Great Lakes Fishery? 38
Public Policy Considerations in Fishery Management 39
Fishery Problems and Progress: Wisconsin Sea Grant Advisory Service Perspective 40
Progress and Problems: Ohio Sea Grant Advisory Services 41
Indian Fisheries Conservation and Research 42
Quota Walleye Management in Western Lake Erie 43
A Forecast for Toxic Chemical Levels in Lake Mchigan Fish 44
Differences among Fighes In Accumulation of PCBs: A Modeling Approach 45
Porage Pishes and Their Salmonid Predators in Lake Michigan: Past, Present and Pogsibilities 46
Aquaculture Policy and Planning in the Great Lakes Region 47
Can New Technologies Produce a Safe, Usable Product? 48

U.S. FISE AND WILDLIfe service programs in the great lakes

Abstract

The Service Management Plan was approved In June 1980 and 1 s the princlpal planning document through which the Fish and Wlldlife Service communicates lts purposes, goals and polletes to other agencles and che publlc. The primary mission of the gervice ls to "provtde the federal leadershlp to conserve, protect and enhance flah and wildife and thetr habltats for the continulng benefit of people."

The FWS shall strongly support the continuation of the traditional role of the states \ln the responalbllity for and the management of flsh and widllfe, wth the exception of FWS lands, whtch are a responslbility.

Indlan tribal governments have primary and tradttional responsblify for the management of flsh and wlldlffe on reservations, and also have authortty to regulate tribal members in exerctaing off-reservation treaty rights. FWS has trust responslbility to asslst tribes.

The FWS has Identifled 78 "Important Resource Problems" nationwlde. Acld raln ranks 10 ch on that $1 i s t$, and llth ls freshwater fishes and fish hableat -- the Great Lakes.

FWS objectives for the Great Lakes are to particlpate in the development of the Strategtc Great Lakes Flshery Management plan, control sea lamprey populat Lons to no more than 10% of their 1958-60 level, tncrease annual hatchery production to a predetermined level of lake trout as required by the Great Lakes Fishery Management Plan, and Increase lake trout populations in Lakes Huron, MLchlgan, Ontarlo and Superior until naturally produced trout comprise 50% of the populations.

Hatchertes tn Mtchtgan (Jordan Rtver, Pendills Creek and Hiawatha Forest) produced nearly 9 millton lake trout in $\operatorname{FY} 80$, one-third of which were stocked on off-shore sltes. We wlll have the capabllity to tncrease off-shore stocking to 50\% [n 1981. The Iron River Nacional Pish Hatchery in Wisconsin ts under construction and will provide an addttional 3.5 millon lake trout for stocking In the Great Lakes begtnaligg in 1983.

The Genoa, WLs., Hatchery Blologist's Laboratory ts instrumental in malntalning the Great Lakes Flsh DLsease Control. Pollcy through a multi-agency effort involving federal, state and private hatcheries. The FWS tntends to remain a strong supporter of the Dt sease Control Policy and is now in the process of developing cooperative agreements with all concerned states.

John W. Quam
Assistant Area Manger-Fisheries
U.S. Fish and WIldiffe Service

St. Paul, Minnesota

PROGRESS AND PROBLEMS RELATED
to THE GREAT LAKES FISHERIES - MINNESOTA

The State of Minnesota has In Its boundarles only 4 percent of the Great Lakes water area, but this trcludes 2 milliton actes of Lake Supertor, a rocky, prectpitous basin perlmeter considered to be one of the state's most unique resources. Local flsh spectes are typleal of the cold, ollgotrophic nature of these waters and have provided a fishery that t n recent years has suffered from many of the game problems occurring throughout Lake Superior.

The more noteworthy problems are centered around the rahabilltation of the lake trout and lake herring flsh populations. In the case of the lake trout, the apparent relationshlp between heavy stocking rates and survival of juvenlles has shown that a buffer from sea lamprey predation must protect the juventlea to obtain survival. Fry stocktng of lake herring is belng attempted to restore this population, yet the relationshlp between the herring and ratnbow smelt ts not well understood. In elther case, our goal is to attaln self-sustalning populations of such a alze as to support a signlficant flshery. A steelhead populat ion supplemented by chinook salmon ts the goal of our state's sportfish management plannlng.

It $I s$ hoped that present research wlll provide an lmproved straln of Lake Superior lake t rout for brood stock, as well as better stralns of steelhead trout for the sport flshery. A creel census is underway to assess the aport fishery harvest, but there 1 s need to determine the economic value of the sport fishery. Similar lnformation is needed for the commercial fishery. relaclve worth of this renewable resource ls sorely needed to glve proper perspective to the flahertes of the Great lakes In view of the cont inuous chreats to their existence.

From the state management viewpolnt, Sea Grant research and extenston can assist $I n$ many areas where such expertise is lacking ot tnadequate. To avold unnecesgary duplication and promote complementary work, joint plannling and cooperative studies cannot be overemphasized. Research and other data has been collected on the Great Lakes for over 30 years, and any new studies must be planned on the basis of avallable information.

The flsherles agency cllentele, the commerctal and sport ftshermen, can also beneflt from extension educational services. States are normally deftcient in such services, wht ch include clintcs, publications and current advisories that benefit flshermen, whether anglers or netters.

Minnesota can benefit from these services and others that may be avallable from the academtc communtty. For example, we need to map and classtfy the bottom shoals of Lake Superlor to tdentify potential spawntng reefs for lake trout. Perhaps there are tools of the trade that wlll now produce such maps and skilled personnel to provide such data. Identiftcation of fry two years after stocklng is sorely needed by blologlsts attempting to evaluate the success of fry stocking.

Flaheries resource managers depend heavily on management-orlented research and generally tnvest a slgniflcant amount of thelr budget toward that end. We turn to research btologlsts for solutions to blologlcal problems and place our confidence in their approach to deal with each. For this reason, it is tmperative that other researchers deallng with fish management problems work closely wth these indtviduals.

Flially, the geopolttical problems faclng Great Lakes fishery managers may pose a new venture ta the form of post-educational tratning of fisherles workers. Strateglc plannlng, Involving Interjurladtctional approaches to dealling wLh lake-wlde fisherles lssues, are presenting new challenges, a newer dimenglon of flsh management.

Jerry Keuhn
Chief of FLsherles
Mlnnesota Department of Natural
Resources
St. Paul, MInnesota

Nev York"s Great Lakes fisheries managenent policy ts to develop the best posaible sport fishery to meet publtc, economlc and recreational needs and develop a controlled commerclal fishery compatible with the sport fishery. Program justification ls based on the tremendous economic potential of the sport fishery ($\$ 100 \mathrm{mLlli}$ on estimate), recteational beneftta and assoclated public support for environmental improvements.

Only thtee of the 50 states have more surface freshwater than New York, thanks to our Great Lakes' holdings (75% of our aupply). Hlstorlcally, state and federal flsherles agencles and the public have moscly lgnored the tremendous fisherles potent lal of these waters untll recently. Meanwhile, other users -- such as navigarlon, power, chemical, steel and other lndustrial Interests -- have changed, degraded or destroyed much of our orlginal aquatic resource base, due prlmarily to lack of publle recognition of the tmportance of the Great Lakes. Today the most sertous challenge facting Great Lakes resource managers ls stoppling environmental condictons. other, more spectfle problems are the need for cont tnued sea lamprey control, adequate stocking, publlc access, adequate private enterprise support facilitiles, funding for necessary research and other activitles to meet those needs, and above all, contlnued public and legislative support for the program.

Stnce 1968, tremendous progress has been made in recogntzing, resolving or addressing the above problems. New York probably has one of the most Intenslve contaminant survellance and reatrictive pollution control programs ln the country. We have led the flght agalngt winter navigation and other industrial uses of the Great Lakes that haven't proven to be environmentally acceptable. We have pushed for recogntrion of the ecosystem approach to lakewlde/bastnwlde Great Lakes flsherles management now accepted by the great Lakes Fishery Commisston and the International Jotnt Comingsion. We have fully participated In the development of a Stategic Great Lakes Fishery Management Plan, which provides a lakewide/baslnwide planntng process that coordinates envl ronmental and fteherles management on an ecosystem scope. We now have one of the finest developing salmonld sport fisheries in the world, supported by a new Salmon Rlver Hatchery wich a 250,000 -pound production capaclty and federal lake trout stocking. In cooperation whth the Great Lakea Fishery Comisaton, U.S. Fish and WLlditfe Service, Canadian Department of Fishertes and Oceans, the Ontarlo Minlstry of Natural Resources, the Pennsylvania Flsh Comuisslon and others, we have developed lakewide sea lamprey control, a lake trout rehablltation program and a forage fish stock assessment program. Finally, through Federal Ald Dingell Johnson and Aradromous Fish research funding, we have been able to carry out the practical research necessary to develop our successful Great Lakes fisherles program. Most recently, emphasis has been placed on intengive management of warn/ coolwater spectes such as walleye, smallmouth and largemouth bass, northern plke, muskellunge and yellow perch, partlcularly in Lake Erle and the St. Lawtence Rtver. Restructuring of our compercial and sport flsherles regulations is underway, based on Information derived from that research.

Above all, through exceptional cooperation from New York's Great Lakes Sea Grant staff, we have enltsted the many publics such as sportsmen's groups, bustnessmen, legtslators (including the newly formed Great Lakes Count es' Leglalat ve Fishery Advisory Boards) to obtaln Eull public support for our fisheries program. This has been essentlal in attacking the contaminant problem, particularly in Lake Ontarlo. Our present pollcy is to contlnue the development of our Great Lakes spor fishery simultaneously with a full effort by all concerned to resolve the contaminant problem. Since 1968, we have been very successful in aplte of the above problems in developing a Great Lakes sport and compatible commerclal flshery In our Great Lakes waters that is one of the best in the world. We expect lt to continue to lmprove in the next decade.

Willam A. Pearce, Supervt sor
Great Lakes FLsherLes Section
New York State Department of Envlronmental
Conservation
Albany, New York

WHAT DO SPORT FISHERMEN WANT FROM THE GREAT LAKES FISHERY?

1. Matntaln a management program that will provide the opportunlty for reasonably satlafactory catches by sport fishermen. There should be a mix of spectes that provides a long season, wlth fish avallable both to shore and boat fishermen. More flah should be available where the flshtig pressure ls heavteat.
2. Contlnue to Improve commulations between those responstble for management of the flsheries and sport fishermen. Particlpation in meetlings \rightarrow such as the present one sponsored by UW Sea Grant -- should be encouraged. Sport flshermen are eager for tnformation about pregent and future programs related to thelr favorite form of recreation. Keep in

3. More recognition of the economic value of the sport fishtig lndustry. The market value of the catch does not reflect the true economic value of the sport flshery. We belleve lt ls a reasonable estlmate that more than one million sport fishermen on Lake Mlchtgan spend $\$ 350$ mlliton annually for their favorlte famlly recreation.
4. More recognttion of the soctal and human values of sport fishlng. The need to find satlsfying family recreation closer to home is becoming more urgent as the fuel crunch increases. Great Lakes sport flshlng is wichln easy reach of some 40 million persons Ln the Mldwest.
5. Better Interstate and interagency cooperation. Wth the proliferation of current budget-trimmlng trends for govermment agencles, it le imperative to derlve the maximum efficlency from funds that are avallable. If one state or agency can produce coho salmon (or some other desitrable stocklng apectes) at a lower cost, other states should constder purchasing stock from thls tate, if posslble. Better coordination of research could lead to greater cost-effleiency through avolding duplicated effort.
6. More tnvolvement of sport flshermen in flshery management, There appears to be a lack of representation of sport fishermen on the vartous boards and advisory groups related to management of the Great Lakes ftshery. Whtle not fishing for proftt, sport fishermen are vitally concerned with the future of the Great Lakes for the welfare of present and future generations.
7. Better law enforcement. Violations of fishing regulations -- by sport or commercial fishermen -- are harmful to the management of the fishery and an affront to law-abiding citizens. There will never be enough law enforcement offtcers to patrol the waters of the Great Lakes adequately to apprehend violaters, so public support should be enlisted. Michigan's RAP program (Report All Poachers), for lnstance, seems to be productag desired results.

Eldon Robbins
Great Lakes Sport Ftshing Counct 1 Milwaukee, Wisconsin

PUBLIC POLICY CONSIDERATIONS IN FISHERY MANAGEMENT

In his talk, Virgil Norton focused on some of the public policy issues related to fishery research and management. He said that in some cases fishery research has been "sold" or fustified on its immediate applicability to fishery management needs, but this has been misleading. In most cases, scientists are not able to answer the questions that contribute to short-term decision-making of the kind done by the regional fishery councils. "Let's not argue for [multispecies] models on the basis of how they contribute to immediate fishery management decision-making," said Norton, "but on the basis of how they contribute to scientific knowledge in general." He said that scientists shouldn't get caught in the "tidal wave" of tying every piece of research to current management questions, or they will lose out in the long run. They have to be more concerned about public policy.

In looking at public policy related to fishery management, Norton said that we have to consider what we expect our management approaches to yield. Many have argued for government action to ensure economic efficiency, he said, but government involvement is not always the best answer. The government may be going overboard in terms of regulation. Regulations may protect obsolete practices or inefficient production. And, he added, each new regulation imposes costa in terms of information needs or enforcement. Also, many regulations deal with resource distribution questions, Norton sald, and fishery managers shouldn't be solely involved in income distribution.

Norton added that fishery managers have to come up with rational management programs \rightarrow ones that go beyond simple questions of dollars and cents. "If we are not going to attain or strive to attain economic efficiency," he sald, "what other obfective can we justify? To me, it seems to be conservation, in the sense of preservation. Our function, then, is no longer economic efficiency but management to avoid eliminating a species." In conclustion, Norton asked the question, "Are we going to develop an effective management system to attain economic efficiency?" If not, he said, fishery managers should assume an entirely different public role, and that's to press for preservation of our fisheries resources.

Virgil Norton
Dept. of Agricultural and Resource Economics
Uni versity of Maryland
College Park, Maryland

FISHERY PROBLEMS AND PROGRESS:
WISCONSIN SEA GRANT ADVISORY SERVICE PERSPECTIVE

The problems confronting the Wisconsln fishery stem from three maln sources and can be classlfied as falling lnto the following general categorles:

1. Dt aruption of the Great Lakes ecosystem.
2. Fish population dynamics (flsh stock fluctuations).
3. Pollut on and microcontaminant levels in the aquatic envitronment.

Each of the above problem classtflcation areas has a direct effect upon recreational and commerclal fishing in the Great lakes and have become the focal potnt for UW Sea Grant Advisory Service programing.

Ecosygrem modiflcation has resulted from processes such as harbor dredgling, flillng marshlanda, excesslve stlting and other types of encroachment on the aquatle envitonment brought about by signlficant changea In the Great Lakes ecosystem. Thls has led to losses of spawning and nursery habltat for fish ln many areas within the system. These situations have helped cauge and malntain the present imbalance $t a$ the fish population.

Although a great deal of controversy surrounds the proposed explanatlons for why fish populat lons fluctuate, the fluctuation of fish stocks are a threat to the stabtilty of the commercial ftshlng lndustry and a cause for conern among recreational fishermen. Slnce comerclal flshing depends upon a limlted number of spectes, any decrease in the number of commerclally harvested spectes puts undue financial stress upon the commerclal segment of the industry, Likewise, poor catch rates for tecreational spectes results in reduced partlcipacion by angler and reduced revenues for the recteat ion-dependent segment of the Industry. As part of the UW Sea Grant Advisory Servlces program, attempts have been made to educate both recreat onal and commerclal flishermen about procedures that would increase the benefltg from fish harvested. This includes shore courses on fish handling and processing, publications on flsh technology and preparation procedures, and the use of radio to lnform the general public about flsh and fish use.

At present, the problem that poses the greatest threat to the Great Lakes fighing industries ts that of mlerocontaminants. In spite of all the work that has been done in this area, llttle has been accomplished with respect to allevtating the pressure on the flshery. GL ven the present state of the art, It looks as If little can be done other than to let nature take its course.

David A. Stulber
Department of Food Science Uni versity of Wisconstn-Madison

The Ohto Sea Grant Advi o ory Services was formed In September 1978. The first agent, Frederlc L. Snyder, atarted In October with a prlme responstblllty of worklng wlth sport and comerclal fishermen. Materlals relating to fish handilig and preparation have been prepared for each audlence. However, due to the huge number of sport flshermen (700,000), utilizigg Ohio's portion of Lake Erie, the agent was forced to spend a great deal of time with that group. Fortunately, a research project to develop markets for underutllized apectes was runntig concurrently and allowed ohto Sea Grant to interact effectively with commerclal fishermen. In November 1980, following completion of the marketing research effort, a second Sea Grant agent, David O. Kelch, starced work. One of Dave's major areas of emphasis is to contlnue Sea Grant's fishertes marketing objective in an Advisory Service mode by working as a catalyst between commerclal fishermen and retallers and consumera.

Recently, Ohlo Sea Grant has begun to work with aquaculturlsts withtn Ohto and has hired a thlrd agent, Frank Lichtkoppler, to start In Febraury 1981. Frank's primary responslbility ts eroslon and shore process; however, he has an aquaculture background E rom Auburn University and will be called upon to assist In thls area. His presence will complete our inttlal objectives in that all components of the flshery can now be addressed.

The completion of the agent selection process has been one of our major succesges. However, almost equally Important has been our link with the ohto Cooperative Extenston Service, which through tia county home economits has allowed Sea Grant to lncrease utllization of seafood products by educating homemakers on cleanlng, cooklng and preservation technlques.

Our one major disappointment has been the lnability to develop a large, profitable market for freshwater drum.

In sumary, we are most pleased wlth our educat ional and advisory service efforts and capablilttes as they relate to Lake Erte's flaheries. We are cont inul ng to work toward greater cooperation with the U.S. Fish and WIldilfe Service and the Ohio Department of Natural Resources.

Dr. Jeffrey M. Reutter
Sea Grant Advisory Services
Ohto State Unlversity-Columbus

INDIAN FISHERIES CONSERVATION AND RESEARCH

The varlous treatles berween the U.S. Government and the many Indtan tribes of the Great Lakes regton established these tribes as tndividual soverefgnties. As a result, the tradtrional Ind an attltudes toward hunting and fiahtig contlnued through the years. Tribal wembers flshed and hunted hovever and whenever they deslred, with little regard for the resource. Thls presented no problems as long as the tradttonal neta, boats and weapons were used. However, when modern equipment became avallable and adopted, the tmpacta on the resources began to show.

The followlng comments apply only to the 10 Wt sconsin reservations under the jurisadtcation of the Bureau of Indtan Affalrs' Great Lakes Agency In Ashland, WIs.

Several Whaconstn tribes recogntzed the need for establishting controls on the harvest of ftsh and game but were hampered by the lack of tralned personnel. funding and most of all, atrong opposition from tribal members. Wthtn the past three years, fedaral funds have been allocated to six tribes for establishl ng contervation codes, clvil court aystems and conservat lon law enforcement programs. In addtiton, the Red Cliff tribe now employs a professtonal ftshertes blologlst for conducting research on trout, walleye and wht teftsh populations in Lake Superlor.

The two Wlaconsln tribes located on Lake Superlor have tralned tribal wardens to enforc congervation codes that apply to both members and outslders. Red Cliff, uslig data collected by thelr flgherles blologlst, gets lumits and seasons for trout and whteflsh, and requires tagging of trout caught by tribal commerclal flahermen. The Bad Rlver has closed the Kakagon Sloughs at the mouth of Bad RIver to the taklng of walleyes by any means durlig the spawntng season. The exception la that the Bad River Fish Hatchery ta peraltted to set nets for the collection of sparn.

Whi le keeplng a low profile, Indian conservation law enforcement and fiaherles research prograns are begland ng to beneftr the Wisconstn portion of Lake Supertor's flshertes. We encourage continued cooperation and tmproved worklng relat tons between all cribes and the varlous federal and state agencles involved \ln conservation activitles.

Charles A. McCuddy
Natural Resources Spectalist
Great Lakes Agency
Bureau of Indlan Affairs
U.S. Department of Intertor
Ashland, Wisconsln

QUOTA WALLEYE MANAGEMENT
IN WESTERN LAKE ERIE

The western Lake Erle walleye population has changed drastically In the last 40 years. There was an acute decilne f a the late 19500°, then an equally acute resurgence in the 1970 .

Beginnling in 1966, Ohlo undertook ateps to reduce commerclal net mortallty of walleye and related specles. All glll netting was stopped ln western Lake Erie durling that year. Shortly thereafter, a sport bag-limit of 10 walleye was established. A few years later, all commerclal netelng in stx blologlcally lmportant zones in weatern and central Lake Erie was prohtblted. The mercury crlsia tn the early 1970 partially preempted and complicated the evaluation of these earlier strategles. In 1972, all OhE commercial walleye harvest was stopped by WLIdlife Order. Beglnning ln 1973, the Great Lakes Ftshery Commisaton provided a forum for the development of international quota management. Ohto atrongly endorsed this management strategy by passling quota legislation In 1974.

The ohlo comercial walleye harvest ban remalns in effect today. A sport bag-1imit of slx was adopted in 1980. Quota management, however, has not been legally adopted in Ohio because the total allowable harvest is not as high as the performance of the flsherles and stock denstty and distribution auggest they ghould be. The quota concept has produced a positive effect on western Lake Erle walleye. It only remains that thls effect is expanded to tnclude related species, thus providing "collective quota management" for a flsh commutty whereln all agency philosophtes and prlarttles could be accommodated whth minlmum biological loss to all affected spectes.

Russell L. Scholl
Agalatant Chief Dt viston of WIldilfe
Ohio Department of Natural Resources
Columbus, Ohio

A PORECAST FOR TOXIC CHEMICAL LEVELS
IN LAKE MLCHIGAN FISH
Trends in the levels of DDT and PCBe ta Lake Mlchlgan fleh provide a bagla for projecting the reapone - mensured as the contaminant concentration in figh - to change in contaninant input to the lake. Data on the rate of decline of th DOT-group peetictdes In Coho salnon In Lake Mtchigan Indicates che residence tiae for DDT in the water column ls about 1.75 years. Transport to Coho via pelaglc and benthle tood chalne corresponds to about 80% and 20%, tempectively, of the Coho body burden of total DDT pritor to the ban on DDT use. Traneport of PCBs and DDT are expected to be slathar. Consequent ly, raduction of the Input of PGse and tallar chealcals tnto the Great Lakeg should result in afity rapld and large decrease in the concentrations prasant to the floh. A mass balance for PCBe [n Lake Michtgan tndtcates loss occure mataly by sedimentation and burlal. Atmosphertc input is an mportant souct. The laportanca of tributary laput and direct discharge are uncertaln.

David E. Arwerrong
Department of Clvil and EnvLronmental Englneering
Unt verslty of Whaconsin-Madison

Food hablts, thermal preference and life history tralts of fish Influence thetr accumulat lon of microcontaminants auch as PCBs. From known thermal hl story and observed growth data, a bioenergerlcs model of fish growth computes food consumed and oxygen resplred for several spectes of lake MLchlgan flshes and eatlmates of PCBa accumulated via trophlc and direct uptake pathways. For large salmonlds In Lake Mlchigan, dlet and growth efficlency differences combine to produce differences In rates of PCB accumulacion. Adult alewtves, whtch contain relatively high levels of PCBa, are the major source of PCBa for Lake MLchlgan salmonlds. For flsh of given age, varlation \ln welght may account for a LOX-20\% difference in expected PCB concentration; but for lake trout of equlvalent welght, age may account for 500% difference in expected $P C B$ concentration. For flish of equivalent age and welght, life history differences can account for 2007 (Lake trout va. coho salmon) and diet differences up to 4007 (alewlfe dlet va. smelt diet). We present results that predtct how a substitut ton of other forage flah for alewlves \ln salmontd diets would reduce by wore than 50 the amount of PCB accumulated by the several salmonld placlvores. Extrapolating the current rate of reduction of $P C B$ ln forage fishes yields modeling forecasts for PCB concentrations In lake trout: A $2-3 \mathrm{kl}$ logram, flve-year-old flah should have 5 ppm PCB $\operatorname{Ln} 1983$ and 2 ppw PCB in 1990.

J.E. Breck and J.F. Kitchell
Laboratory of Limnology
Unl veralty of Whacongln-Madtson

```
FORAGE FISHES AND THEIR SALMONID PREDATORS IN LAKE MICHIGAN:
    PAST, PRESENT AND POSSIBILITIES
```

Alewtfe and rainbow smele domlnate the planktvorous flah fauna of Lake Mlchigan and are now the prlaary food of lake trout and lntroduced salmonids. Pluctuations In the abundance of alewtives and amelt have been a concern due to the effect on natlve spactes and because of thelr present role as forage spectes. Each has been Lmpllcated as an lmportant contributor ln the local reduction or extlaction of tmportant native specles. Mechantsms for these tateractions include compettiton for food and predation on fish eggs and larvae.

Bloenerget c modellng almulations of alewlfe consumption by stocked salmonlds suggests that as much ss one-thl rd of the annual alewife production Ia consumed ln some years. Increastng stocking rates of salmonlds in Lake Mtchigan yleld a predator-prey aystem ln whtch the predator numerlal response ta relat vely Lndependent of prey dyaames. This suggests posstble decllnes In alewlfe production, changes in major forage available to predators and perhapa destabillzation of the current predator-prey syotem.

Donald J. Stewart*, James F. KItche 11 and Larry B. Crowder
Laboratory of LLmnology/Department of Zoology
Univeralty of WLsconsln-Madison

[^2]A flve-year effort by the aquaculture tndustry and admintstrative and legislatlve branches of the federal government has resulted in recent enactment of the Nat lonal Aquaculture Act of 1980 (Public Law 96-369; September 26, 1980). The act's primary function 1 s to provide for policy
 aquaculcure. The act establtshed an interagency "Jotnt Subcomittee on Aquaculture" chrough the offlce of Sctence and Technology Policy; names the departments of Agrlculture, Comerce and faterlor as lead agencles In directing the federal effort In aquaculture, and mandates the development of a "National Aquaculture Plan," plus assessments of the economlc and regulatory constralnts on aquaculture. Approprlations totaling $\$ 50$ million for the three lead agencles for 1981-83 were authortzed by the act, but $1 t$ appears that these funds will actually be included in the federal budget over the next few years in light of the Reagan Admlntstracton's announced spending cutbacks. Federal planning to date has emphastzed the need for state, regional and local participation in pollcy development, research and fundting. In response co thl 8 , the Great Lakes Sea Grant Network la attempting to formulate a prelimt nary plan for aquaculture development in the Great Lakes reglon. Particlpation by state and reglonal agencles, the land grant college system and the private sector will be essentlal co chls effort.

Terrence B. Kayes
Asslstant DLrector
Aquaculture Research Laboratory
Unt vergity of Wieconsti-MadIson

Most people famillar whth the Great Lakea are aware of the many problems that affect the Great Lakes aystem. One such problem is environmental pollutton. Although there are nuwerous forms of pollution, the form whtch has caused the greatest difflculty for the flshery (both recrearional and comerctal) ts the presence of chlorlnated hydrocarbon compounds, whteh are absorbed by and accumulate in fiah.

Most of the chlorinated hydrocarbon compounds currently found In flah have been classtfied as potentally hazardous, and tolerance levels have been established to protect consumers agatnat overexposure to these materlals. Technologists have addressed the problem of ehlorlnated hydrocarbon restdues In flah, hopling to find or devalop both Inexpenslve and effective methods that could be used during fish processing to totally remove or drastlcally reduce the contaminant levels in the flehery product. To date, no effective method has been found that will meet the deslred objective of reducing the contamlnant level and continue to produce Integrlty.

If the princlpal objective 1 s stmply to produce a safe, usable human food product, the technology exlating today could accomplish that goal. Processing procedures lnvolving fish flesh extraction wlth laopropyl alcohol will effectively remove chlorinated hydrocarbon compounds with the lipld from the fish flesh, leaving an odorlese, flavorless, flour-itke product high in protein but having the phystcal propertles of sand. Such a product could be used to enrlch food products of low proceln value, but the cost of production and avallable markets for te ake the process prohibltive.

Another and wore plausible approach to using the chlortnated hydrocarbon-contant nated resource la the converston of the ftah into tndugtrial flahery producta, such as fish meal and flsh oll. By modifyting the extsting flsh meal processes, t should be posstble to produce a ftnal product that would moet established guldeline levels for chlorlnated hydrocarbon restdues in auch products. Through the use of fish meal and oll as antmal feed ingredients, the human food requlrement would be indirectiy met with the other food products were consumed.

David A. Stulber
Department of Food Sclence Uni versity of WIsconsln-Madison

Reports Concerning the Great Lakes Fisheries.

 by the Univerisity of Wisconsin Sea GrantFish Spawning Grounds in Wisconsin Waters of the Great Lakes, Catherine E. Coberly and Ross M. Horrall. 43 pp. University of Wisconsin Sea Grant Institute. August 1980. \$1.00.

Wisconsin's Lake Michigan and Green Bay Commercial Fisheries - A Statistical Overview. Richard C. Bishop, Daniel L. Vogel, Glenn G. Stevenson and Ramona Weakland. 48 pp . University of Wisconsin Sea Grant Institute. September 1978.

The Lake Michigan Angler: A Wisconsin Profile. Karl C. Samples and Richard C. Bishop. 59 pp . University of Wisconsin Sea Grant Institute. June 1981. \$1.00.

The Fish of Lake Michigan. Warren Downs. 32 pp . University of Wisconsin Sea Grant Institute. 1974. 50d

The Fish of Lake Superfor. Warren Downs. 36 pp . University of Wisconsin Sea Grant Institute. 1974. 504

The Technology of Perch Aquaculture. John Quigley and Richard Soderberg. $42 \mathrm{pp} . \quad$ University of Wisconsin Sea Grant Institute. 1977.

For coples of these reports, contact:
University of Wiaconsin Sea Grant Inatitute
Commundcations Office
1800 University Avenue
Madison WI 53706
Phone: (608) 263-3259

[^0]: "Is the data base avallable and are the methods used for assessment of fish stocks sufficlently rellable to ensure that the estlmated catch predictlons, and hence the TACs* based thereon, will lead to the 'agreed' objectlves?... Is there any background for computation of TACs without rellable landing statistlea? Has a fishery policy using TACs any future at all? Can TACs be replaced by aome other management tool?
 "What are the objectives of the regulatlons Introduced for the different fish stocks, and who is setting these objectives?... It cannot be a task for the sclentlsts to recomend precautionary TACs. In dolng so, they make purely polltical declalons whth no sclentifte backg round."

[^1]: TTAC stands for Total Allowable Catch.

[^2]: *Present Address: Flsh Diviston, Department of Zoology, Fleld Museum of Natural HLetory, Chlcago, IL 60605

